3.246 \(\int (a+b \cos (c+d x))^4 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=198 \[ -\frac{b^2 \left (3 a^2 B+8 a A b-6 b^2 B\right ) \sin (c+d x)}{6 d}+\frac{a^2 \left (2 a^2 A+9 a b B+9 A b^2\right ) \tan (c+d x)}{3 d}+\frac{a \left (4 a^2 A b+a^3 B+12 a b^2 B+8 A b^3\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+b^3 x (4 a B+A b)+\frac{a (a B+2 A b) \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}+\frac{a A \tan (c+d x) \sec ^2(c+d x) (a+b \cos (c+d x))^3}{3 d} \]

[Out]

b^3*(A*b + 4*a*B)*x + (a*(4*a^2*A*b + 8*A*b^3 + a^3*B + 12*a*b^2*B)*ArcTanh[Sin[c + d*x]])/(2*d) - (b^2*(8*a*A
*b + 3*a^2*B - 6*b^2*B)*Sin[c + d*x])/(6*d) + (a^2*(2*a^2*A + 9*A*b^2 + 9*a*b*B)*Tan[c + d*x])/(3*d) + (a*(2*A
*b + a*B)*(a + b*Cos[c + d*x])^2*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*A*(a + b*Cos[c + d*x])^3*Sec[c + d*x]^2
*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.580128, antiderivative size = 198, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {2989, 3047, 3031, 3023, 2735, 3770} \[ -\frac{b^2 \left (3 a^2 B+8 a A b-6 b^2 B\right ) \sin (c+d x)}{6 d}+\frac{a^2 \left (2 a^2 A+9 a b B+9 A b^2\right ) \tan (c+d x)}{3 d}+\frac{a \left (4 a^2 A b+a^3 B+12 a b^2 B+8 A b^3\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+b^3 x (4 a B+A b)+\frac{a (a B+2 A b) \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^2}{2 d}+\frac{a A \tan (c+d x) \sec ^2(c+d x) (a+b \cos (c+d x))^3}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^4*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

b^3*(A*b + 4*a*B)*x + (a*(4*a^2*A*b + 8*A*b^3 + a^3*B + 12*a*b^2*B)*ArcTanh[Sin[c + d*x]])/(2*d) - (b^2*(8*a*A
*b + 3*a^2*B - 6*b^2*B)*Sin[c + d*x])/(6*d) + (a^2*(2*a^2*A + 9*A*b^2 + 9*a*b*B)*Tan[c + d*x])/(3*d) + (a*(2*A
*b + a*B)*(a + b*Cos[c + d*x])^2*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*A*(a + b*Cos[c + d*x])^3*Sec[c + d*x]^2
*Tan[c + d*x])/(3*d)

Rule 2989

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*c - a*d)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)
*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[
e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (
A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*d)
*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(
c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c
*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*
d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^4 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx &=\frac{a A (a+b \cos (c+d x))^3 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{3} \int (a+b \cos (c+d x))^2 \left (3 a (2 A b+a B)+\left (2 a^2 A+3 A b^2+6 a b B\right ) \cos (c+d x)-b (a A-3 b B) \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac{a (2 A b+a B) (a+b \cos (c+d x))^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac{a A (a+b \cos (c+d x))^3 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{6} \int (a+b \cos (c+d x)) \left (2 a \left (2 a^2 A+9 A b^2+9 a b B\right )+\left (8 a^2 A b+6 A b^3+3 a^3 B+18 a b^2 B\right ) \cos (c+d x)-b \left (8 a A b+3 a^2 B-6 b^2 B\right ) \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac{a^2 \left (2 a^2 A+9 A b^2+9 a b B\right ) \tan (c+d x)}{3 d}+\frac{a (2 A b+a B) (a+b \cos (c+d x))^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac{a A (a+b \cos (c+d x))^3 \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac{1}{6} \int \left (-3 a \left (4 a^2 A b+8 A b^3+a^3 B+12 a b^2 B\right )-6 b^3 (A b+4 a B) \cos (c+d x)+b^2 \left (8 a A b+3 a^2 B-6 b^2 B\right ) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx\\ &=-\frac{b^2 \left (8 a A b+3 a^2 B-6 b^2 B\right ) \sin (c+d x)}{6 d}+\frac{a^2 \left (2 a^2 A+9 A b^2+9 a b B\right ) \tan (c+d x)}{3 d}+\frac{a (2 A b+a B) (a+b \cos (c+d x))^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac{a A (a+b \cos (c+d x))^3 \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac{1}{6} \int \left (-3 a \left (4 a^2 A b+8 A b^3+a^3 B+12 a b^2 B\right )-6 b^3 (A b+4 a B) \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=b^3 (A b+4 a B) x-\frac{b^2 \left (8 a A b+3 a^2 B-6 b^2 B\right ) \sin (c+d x)}{6 d}+\frac{a^2 \left (2 a^2 A+9 A b^2+9 a b B\right ) \tan (c+d x)}{3 d}+\frac{a (2 A b+a B) (a+b \cos (c+d x))^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac{a A (a+b \cos (c+d x))^3 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{2} \left (a \left (4 a^2 A b+8 A b^3+a^3 B+12 a b^2 B\right )\right ) \int \sec (c+d x) \, dx\\ &=b^3 (A b+4 a B) x+\frac{a \left (4 a^2 A b+8 A b^3+a^3 B+12 a b^2 B\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}-\frac{b^2 \left (8 a A b+3 a^2 B-6 b^2 B\right ) \sin (c+d x)}{6 d}+\frac{a^2 \left (2 a^2 A+9 A b^2+9 a b B\right ) \tan (c+d x)}{3 d}+\frac{a (2 A b+a B) (a+b \cos (c+d x))^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac{a A (a+b \cos (c+d x))^3 \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [B]  time = 5.9631, size = 415, normalized size = 2.1 \[ \frac{\frac{8 a^2 \left (a^2 A+6 a b B+9 A b^2\right ) \sin \left (\frac{1}{2} (c+d x)\right )}{\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )}+\frac{8 a^2 \left (a^2 A+6 a b B+9 A b^2\right ) \sin \left (\frac{1}{2} (c+d x)\right )}{\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )}-6 a \left (4 a^2 A b+a^3 B+12 a b^2 B+8 A b^3\right ) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+6 a \left (4 a^2 A b+a^3 B+12 a b^2 B+8 A b^3\right ) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+\frac{a^3 (a (A+3 B)+12 A b)}{\left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^2}-\frac{a^3 (a (A+3 B)+12 A b)}{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2}+\frac{2 a^4 A \sin \left (\frac{1}{2} (c+d x)\right )}{\left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^3}+\frac{2 a^4 A \sin \left (\frac{1}{2} (c+d x)\right )}{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3}+12 b^3 (c+d x) (4 a B+A b)+12 b^4 B \sin (c+d x)}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^4*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(12*b^3*(A*b + 4*a*B)*(c + d*x) - 6*a*(4*a^2*A*b + 8*A*b^3 + a^3*B + 12*a*b^2*B)*Log[Cos[(c + d*x)/2] - Sin[(c
 + d*x)/2]] + 6*a*(4*a^2*A*b + 8*A*b^3 + a^3*B + 12*a*b^2*B)*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a^3*(
12*A*b + a*(A + 3*B)))/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + (2*a^4*A*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2]
- Sin[(c + d*x)/2])^3 + (8*a^2*(a^2*A + 9*A*b^2 + 6*a*b*B)*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(c + d*x)
/2]) + (2*a^4*A*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 - (a^3*(12*A*b + a*(A + 3*B)))/(Cos[
(c + d*x)/2] + Sin[(c + d*x)/2])^2 + (8*a^2*(a^2*A + 9*A*b^2 + 6*a*b*B)*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] +
Sin[(c + d*x)/2]) + 12*b^4*B*Sin[c + d*x])/(12*d)

________________________________________________________________________________________

Maple [A]  time = 0.102, size = 262, normalized size = 1.3 \begin{align*}{\frac{2\,A{a}^{4}\tan \left ( dx+c \right ) }{3\,d}}+{\frac{A{a}^{4}\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{{a}^{4}B\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{{a}^{4}B\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+2\,{\frac{A{a}^{3}b\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{d}}+2\,{\frac{A{a}^{3}b\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+4\,{\frac{B{a}^{3}b\tan \left ( dx+c \right ) }{d}}+6\,{\frac{A{a}^{2}{b}^{2}\tan \left ( dx+c \right ) }{d}}+6\,{\frac{B{a}^{2}{b}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+4\,{\frac{Aa{b}^{3}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+4\,Ba{b}^{3}x+4\,{\frac{Ba{b}^{3}c}{d}}+A{b}^{4}x+{\frac{A{b}^{4}c}{d}}+{\frac{B{b}^{4}\sin \left ( dx+c \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c)^4,x)

[Out]

2/3/d*A*a^4*tan(d*x+c)+1/3/d*A*a^4*tan(d*x+c)*sec(d*x+c)^2+1/2/d*a^4*B*sec(d*x+c)*tan(d*x+c)+1/2/d*a^4*B*ln(se
c(d*x+c)+tan(d*x+c))+2/d*A*a^3*b*sec(d*x+c)*tan(d*x+c)+2/d*A*a^3*b*ln(sec(d*x+c)+tan(d*x+c))+4/d*B*a^3*b*tan(d
*x+c)+6/d*A*a^2*b^2*tan(d*x+c)+6/d*B*a^2*b^2*ln(sec(d*x+c)+tan(d*x+c))+4/d*A*a*b^3*ln(sec(d*x+c)+tan(d*x+c))+4
*B*a*b^3*x+4/d*B*a*b^3*c+A*b^4*x+1/d*A*b^4*c+1/d*B*b^4*sin(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 1.16211, size = 331, normalized size = 1.67 \begin{align*} \frac{4 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{4} + 48 \,{\left (d x + c\right )} B a b^{3} + 12 \,{\left (d x + c\right )} A b^{4} - 3 \, B a^{4}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, A a^{3} b{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 36 \, B a^{2} b^{2}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 24 \, A a b^{3}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, B b^{4} \sin \left (d x + c\right ) + 48 \, B a^{3} b \tan \left (d x + c\right ) + 72 \, A a^{2} b^{2} \tan \left (d x + c\right )}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^4 + 48*(d*x + c)*B*a*b^3 + 12*(d*x + c)*A*b^4 - 3*B*a^4*(2*sin(d
*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 12*A*a^3*b*(2*sin(d*x + c)/(si
n(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 36*B*a^2*b^2*(log(sin(d*x + c) + 1) - log
(sin(d*x + c) - 1)) + 24*A*a*b^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*B*b^4*sin(d*x + c) + 48*
B*a^3*b*tan(d*x + c) + 72*A*a^2*b^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.54464, size = 524, normalized size = 2.65 \begin{align*} \frac{12 \,{\left (4 \, B a b^{3} + A b^{4}\right )} d x \cos \left (d x + c\right )^{3} + 3 \,{\left (B a^{4} + 4 \, A a^{3} b + 12 \, B a^{2} b^{2} + 8 \, A a b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (B a^{4} + 4 \, A a^{3} b + 12 \, B a^{2} b^{2} + 8 \, A a b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (6 \, B b^{4} \cos \left (d x + c\right )^{3} + 2 \, A a^{4} + 4 \,{\left (A a^{4} + 6 \, B a^{3} b + 9 \, A a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (B a^{4} + 4 \, A a^{3} b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/12*(12*(4*B*a*b^3 + A*b^4)*d*x*cos(d*x + c)^3 + 3*(B*a^4 + 4*A*a^3*b + 12*B*a^2*b^2 + 8*A*a*b^3)*cos(d*x + c
)^3*log(sin(d*x + c) + 1) - 3*(B*a^4 + 4*A*a^3*b + 12*B*a^2*b^2 + 8*A*a*b^3)*cos(d*x + c)^3*log(-sin(d*x + c)
+ 1) + 2*(6*B*b^4*cos(d*x + c)^3 + 2*A*a^4 + 4*(A*a^4 + 6*B*a^3*b + 9*A*a^2*b^2)*cos(d*x + c)^2 + 3*(B*a^4 + 4
*A*a^3*b)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**4*(A+B*cos(d*x+c))*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.61798, size = 522, normalized size = 2.64 \begin{align*} \frac{\frac{12 \, B b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1} + 6 \,{\left (4 \, B a b^{3} + A b^{4}\right )}{\left (d x + c\right )} + 3 \,{\left (B a^{4} + 4 \, A a^{3} b + 12 \, B a^{2} b^{2} + 8 \, A a b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (B a^{4} + 4 \, A a^{3} b + 12 \, B a^{2} b^{2} + 8 \, A a b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (6 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 3 \, B a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 12 \, A a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 24 \, B a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 36 \, A a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 4 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 48 \, B a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 72 \, A a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 6 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, B a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 12 \, A a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 24 \, B a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 36 \, A a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/6*(12*B*b^4*tan(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 + 1) + 6*(4*B*a*b^3 + A*b^4)*(d*x + c) + 3*(B*a^4 +
 4*A*a^3*b + 12*B*a^2*b^2 + 8*A*a*b^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(B*a^4 + 4*A*a^3*b + 12*B*a^2*b^
2 + 8*A*a*b^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(6*A*a^4*tan(1/2*d*x + 1/2*c)^5 - 3*B*a^4*tan(1/2*d*x +
1/2*c)^5 - 12*A*a^3*b*tan(1/2*d*x + 1/2*c)^5 + 24*B*a^3*b*tan(1/2*d*x + 1/2*c)^5 + 36*A*a^2*b^2*tan(1/2*d*x +
1/2*c)^5 - 4*A*a^4*tan(1/2*d*x + 1/2*c)^3 - 48*B*a^3*b*tan(1/2*d*x + 1/2*c)^3 - 72*A*a^2*b^2*tan(1/2*d*x + 1/2
*c)^3 + 6*A*a^4*tan(1/2*d*x + 1/2*c) + 3*B*a^4*tan(1/2*d*x + 1/2*c) + 12*A*a^3*b*tan(1/2*d*x + 1/2*c) + 24*B*a
^3*b*tan(1/2*d*x + 1/2*c) + 36*A*a^2*b^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d